化学键

  化学键,指组成分子或材料的粒子之间互相作用的力量,其中粒子可以是原子离子或是分子。化学反应的过程就是原来的化学键断裂,形成新的化学键的过程。这过程跟价电子与电子组态有很大的关系。  研究物质中的化学键,可以帮助人们解释物质的某些性质。例如,氯化钠(NaCl)熔化时要破坏其中的离子键,而在一般情况下,破坏离子键是需要较多的能量,因此氯化钠的熔点较高。氮分子内部存在着很强的共价键,很难被破坏,所以在通常状况下氮气的化学性质很稳定。  分子中原子之间存在的一种吸引的、把原子结合成分子的相互作用。例如,两个氢原子和一个氧原子通过化学键结合成水分子。化学键有三种极限类型,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氟和钠以离子键结合成Na+-F-分子。共价键是两个或几个原子通过共有电子产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外还有过渡类型的化学键:键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。下面的图解说明各种化学键之间的联系。
    化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号;电子发现以后,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键以及通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。    量子理论建立以后,1927年W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因,原则上阐明了化学键的本质。通过以后许多人,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。  

化学键的类型

  化学键有强与弱之分。一般较强的化学键有离子键及金属键。分子内部共价键可以很强,而多原子分子之间共价键强度则与各原子的相互角度有关。氢键被认为是化学键中较弱的一种,主要作用于分子之间。  无论是什么化学键,也会影响物质的物理性质,例如:熔点、沸点等。在高分子中它作为分子内部的力出现。

·离子键

  阳离子、阴离子通过静电作用形成的化学键称作离子键。两个原子间的电负性相差极大时,一般是金属与非金属,例如:氯与钠,若他们要结合成分子,电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。  离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子Na+的微粒半径比钾离子K+的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,而氯化钠的熔点亦比氯化钾的高。  离子化合物  根据化合物中所含化学键类型的不同,把含有离子键的化合物称为离子化合物 (ionic compound),碱类(如KOH)、大多数盐类(如MgCl2)、大多数金属氧化物(如CaO)都是离子化合物。离子化合物中可能存在共价键,这与其定义并不矛盾(参看下文对共价化合物的定义),如NH4Cl、NaOH便是既具有共价键又具有离子键的离子化合物。

·共价键

  原子间通过共用电子形成的化学键,叫做共价键。它通过两个电负度相近的原子,例如两个氧,互相共用其外围电子以符合八隅体的键结方式结合,因此也有人说这是非金属元素间的结合方式。而共价键有键角及方向的限制,因此不能随意延伸,也就是有分子结构。  共价键广泛存在于气体之中,例如氢气、氯气、二氧化碳。有些物质如金刚石,则是由碳原子通过共价键(巨型共价结构)形成的。  共价键又可分为极性共价键与非极性共价键。  共价化合物  只含有共价键的化合物称为共价化合物(covalent compound),如HCl(在溶液中会成为H+及Cl)、H2O、CO2、CH4、NH3等。因此根据其定义,共价化合物中肯定不存在离子键。  巨型共价结构  巨型共价结构是一些有巨型结构的共价化合物,这些化合物中的共价键遍布了整个结构,键合了所有原子。  如:碳(钻石)、二氧化硅(沙、石英)

·金属键

  金属键则是金属原子间的键结方式,金属阳离子透过与带负电的电子海间的库轮静电力,金属原子间共用游走于空价轨域的电子海,而结合成稳定态,因此金属有很高的延性及展性,而且有很高的熔点(汞除外),并无分子结构。