数学

  数学,研究数量、结构、变化以及空间模型等概念的一门学科,简单地说,是研究数和形的科学。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。“数学”(mathematics;希腊语μαθηματικά)一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义——“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。在中国,“数学”这一名词的形成大约是在宋元黄金时期。  在现实世界中,数与形,如影之随形,难以分割。中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。例如勾股测量提出了开平方的要求,而开平、立方的方法又奠基于几何图形的考虑。二次、三次方程的产生,也大都来自几何与实际问题。至宋元时代,出现了几何代数化。在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。在欧洲,14世纪N.奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽,而17世纪R.笛卡儿提出了系统的把几何事物用代数表示的方法及其应用,在其启迪之下,经G.W.莱布尼茨、I.牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史上的一件大事。  在20世纪中,由于科学技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。18世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。由于自然界的客观规律大多是以微分方程的形式表现的,微分方程的研究一开始就受到重视。微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了内在的现代微分几何。19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。对客观世界中随机现象的分析,产生了概率论第二次世界大战军事上的需要以及大工业与管理的复杂化产生了运筹学、系统论、信息论控制理论数理统计学等学科。实际问题要求具体的数值解答,产生了计算数学。选择最优途径的要求又产生了各种优化的理论、方法。力学物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些高深数学。19世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展。也产生了把数学看作一个整体的各种思潮和数学基础学派。特别是1900年D.希尔伯特关于当代数学重要问题的演讲,以及30年代开拓以结构概念统观数学的法国布尔巴基学派的兴起,对20世纪数学发展的影响至深且巨。科学的数学化一语也往往为人们所乐道。数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学。数学本身的内部需要也孳生了不少新的理论与分支。同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。  形的研究属于几何学的范畴。古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。欧洲自文艺复兴时期起出现了射影几何学。18世纪,G.蒙日应用分析方法于形的研究,开微分几何学的先河。C.F.高斯的曲面论与(G.F.)B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪(C.)F.克莱因以群的观点对几何学进行统一处理。此外,如G.(F.P.)康托尔的点集理论扩大了形的范围;(J.-)H.庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。这些都使几何学面目一新。  在数学的蓬勃发展过程中,数与形的概念不断扩大,日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。如把函数看成是某种空间的一个点之类。这种做法之所以行之有效,归根结蒂还是因为数学家们已经熟悉了那种简易的数学运算与图形关系。而后者又有着长期深厚的现实基础。而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。因此,如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。    由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键的作用。理论上的丰富提高与应用的广泛深入在数学史上始终相伴相生,相互促进。但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。计算方法的优越有助于对实际问题的具体解决。由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。而在古希腊则着重思维,追求对宇宙的了解。由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。  基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。  今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,之后会发现许多应用。  创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

简史

 
拉斐尔的作品-《雅典学院》
拉斐尔的作品-《雅典学院》
 数学有着久远的历史。它被认为起源于人类早期的生产活动; 中国古代的六艺之一就有“数”,数学一词在西方有希腊语词源μαθηματικ??(mathematikós), 意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。  史前的人类就已尝试用自然的法则来衡量物质的多少、时间的长短等抽象的数量关系,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。  更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。  从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。  到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。  数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”  在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。

作为科学的数学

 
数学家-卡尔·弗里德里希·高斯
数学家-卡尔·弗里德里希·高斯
 卡尔·弗里德里希·高斯称数学为“科学之母”。其拉丁原文为Regina Scientiarum,而其德语为Königin der Wissenschaften(原意:科学的皇后),其对应于科学的单字意思为知识。而实际上,科学science在英语内的原文内也是这个意思,且无疑问地数学确实一门在此意思下的“科学”。将科学限定在自然科学则是在此之后的事。若认为科学是只指物理的世界时,则数学,至少是纯数学不会是一门科学。爱因斯坦曾这样描述著:“数学定律越和现实有关,它们越不确实;若它们越是确定的话,它们和现实越不会有关。”  许多哲学家相信数学在经验上不具可否证性,且因此不是卡尔·波普尔所定义的数学。但在1930年代时,在数学逻辑上的重大进展显示数学不能归并至逻辑内,且卡尔·波普尔推断“大部份的数学定律,如物理及生物学一样,是假设演绎的:纯数学因此变得更接近其假设为猜测的自然科学,比它现在看起来更接近。”然而,其他的思想家,如较著名的拉卡托斯,便提供了一个关于数学本身的可否证性版本。  另一种观点为某些科学领域(如理论物理)是其公理为尝试着符合现实的数学。而事实上,理论物理学家齐曼即认为科学是一种公众知识且因此亦包含着数学。在任何的情况下,数学和物理科学的许多领域都有着相同的地方,尤其是在假设的逻辑推论的探索。直觉和实验在数学和科学的猜想建构上皆扮演着重要的角色。实验数学在数学中的重要种持续地在增加,且计算(computation)和模拟在科学及数学中所扮演的角色也越来越加重,减轻了数学不使用科学方法的缺点。在史蒂芬·沃尔夫勒姆2002年的书籍一种新科学中提出,计算数学应被视为其自身的一科学领域来探索。  数学家对此的态度并不一致。一些研究应用数学的数学家觉得他们是科学家,而那些研究纯数学的数学家则时常觉得他们是在一门较接近逻辑的领域内工作,且因此基本上是个哲学家。许多数学家认为称他们的工作是一种科学,是低估了其美学方面的重要性,以及其做为七大博雅教育之一的历史;另外亦有人认为若忽略其与科学之间的关联,是假装没看到数学和其在科学与工程之间的交界导致了许多在数学上的发展此一事实。这两种观点之间的差异在哲学上产生了数学是被创造(如艺术)或是被发现(如科学)的争议。大学院系划分中常见“科学和数学”系,这指出了这两个领域被看作同盟而非同一。实际上,数学家基本上会在大体上与科学家合作,但在细节上却会分开。这亦是数学哲学众多议题的其中之一个议题。  数学奖通常和其他科学的奖项分开。数学上最有名的奖为菲尔兹奖,创立于1936年,每四年颁奖一次。它通常被认为是数学的诺贝尔奖。另一个国际上主要的奖项为阿贝尔奖,创立于2003年。两者都颁奖于特定的工作主题,包括数学新领域的创新或已成熟领域中未解决问题的解答。著名的23个问题,称为希尔伯特的23个问题,于1900年由德国数学家大卫·希尔伯特所提出。这一连串的问题在数学家之间有着极高的名望,且至少有九个问题已经被解答了出来。另一新的七个重要问题,称为千禧年大奖难题,在2000年发表出来。每一个问题的解答都有着一百万美元的奖金,只有一个问题(黎曼猜想)和希尔伯特的问题重复。

·符号、语言与严谨性

在现代的符号中,简单的表示式可能描绘出复杂的概念
在现代的符号中,简单的表示式可能描绘出复杂的概念
 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被以文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含着大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。  数学语言亦对初学者而言感到困难。如“或”和“只”这些字有着比日常用语更精确的意思。亦困恼著初学者的,如“开放”和“域”等字在数学里有着特别的意思。数学术语亦包括如“同胚”及“可积性”等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。  严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依著公理被推论下去。这是为了避免错误的“定理”,依著不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许著仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。  公理在传统的思想中是“不证自明的真理”,但这种想法是有问题的。在形式上,公理只是一串符号,其只对可以由公理系统导出的公式之内容有意义。希尔伯特计划即是想将所有的数学放在坚固的公理基础上,但依据哥德尔不完备定理,每一不相矛盾的公理系统必含有一不可决定的公式;因而所有数学的最终公理化是不可能的。然而数学常常被想像成只是一些公理化的集合论,在此意义下,所有数学叙述或证明都可以写成集合论的公式。

数学的各领域

  数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。

·数量

  数量的研究起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生质数猜想及哥德巴赫猜想。  当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。
数论
数论
抽象代数
抽象代数
群论
群论
序理论
序理论

·空间

  空间的研究源自于几何-尤其是欧几里得几何。三角学则结合了空间及数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几里得几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过。(2002年格里戈里·佩雷尔曼宣布证明了庞加莱猜想。)
几何
几何
三角学
三角学
微分几何
微分几何
拓扑学
拓扑学

·变化

  了解及描述变化在自然科学里是一普遍的议题,而微积分更为研究变化的有利工具。函数誔生于此,做为描述一变化的量的核心概念。对于实数及实变函数的严格研究为实分析,而复分析则为复数的等价领域。黎曼猜想-数学最基本的未决问题之一-即以复分析来描述。泛函分析注重在函数的(一般为无限维)空间上。泛函分析的众多应用之一为量子力学。许多的问题很自然地会导出数量与其变化率之间的关系,而这则被微分方程所研究著。在自然界中的许多现象可以被动力系统所描述;混沌理论明确化许多表现出不可预测的系统之行为,而且为决定性系统的行为。

·基础与哲学

  为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。  数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。

·离散数学

  离散数学是指对理论计算机科学最有用处的数学领域之总称,包含有可计算理论、计算复杂性理论及信息论。可计算理论检查电脑的不同理论模型之极限,包含现知最有力的模型-图灵机。复杂性理论研究可以由电脑做为较易处理的程度;有些问题即使理论是可以以电脑解出来,但却因为会花费太多的时间或空间而使得其解答仍然不为实际上可行的,尽管电脑硬件的快速进步。最后,信息论专注在可以储存在特定媒体内的资料总量,且因此有压缩及熵等概念。  做为一相对较新的领域,离散数学有许多基本的未解问题。其中最有名的为P/NP问题-千禧年大奖难题之一。一般相信此问题的解答是否定的。

·应用数学

  应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。应用数学中的一重要领域为统计学,它利用机率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。大部份的实验、测量及观察研究需要统计对其资料的分析。(许多的统计学家并不认为他们是数学家,而比较觉得是合作团体的一份子。)数值分析研究如何有效地用电脑的方法解决大量因太大而不可能以人类的演算能力算出的数学问题;它亦包含了对计算中舍入误差或其他来源的误差之研究。

中国古代著名数学家及其主要贡献

  刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。终生未做官。他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。   《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。  《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。  刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。    祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,对音乐也研究。他是历史上少有的博学多才的人物。    祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中355/113取六位小数是3.141592,它是分子分母在16604以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接12288边形,这需要花费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.   祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。  张丘建-张丘建算经 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。   朱世杰-《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)  贾宪-《黄帝九章算经细草》 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。   贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。     秦九韶-《数书九章》 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。    李冶-《测圆海镜》 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。   李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。

以华人数学家命名的研究成果

          中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的:
  【李氏恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。   
  【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。   
  【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。   
  【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。   
  【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。   
  【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。   
  【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。   
  【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”。   
  【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”。   
  【陈氏定理】数学家陈景润哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”。   
  【杨—张定理】数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”。   
  【陆氏猜想】数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”。   
  【夏氏不等式】数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”。     【姜氏空间】数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”。   
  【侯氏定理】数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。   
  【周氏猜测】数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。   
  【王氏定理】数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”。   
  【袁氏引理】数学家袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”。   
  【景氏算子】数学家景乃桓在对称函数方面的研究成果被国际上命名为“景氏算子”。   
  【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法”。