细胞核

细胞核
细胞核
  细胞核是橾控整个细胞的控掣站,具有双层膜的胞器,主要携带遗传物质(DNA),包括染色体脱氧核糖核酸加上一些特殊的蛋白质)、核糖核酸等,核膜上有许多小孔称做核孔,由数十种特殊的蛋白组成特别的构造,容许一些物质自由通过,但是分子量很大的核糖核酸、蛋白质就必须依赖这些蛋白辅助,以消耗能量的主动运输,来往于细胞质跟细胞核之间。细胞分裂的期间可以看到细胞核中最显著的构造——核仁,其组成为核糖体RNA,以及合成核糖体所需的蛋白质。除核仁外,细胞核中还有许多其它核细胞器,如柯浩体(Cajal body), PML体等。 有趣的是,有些细胞为了执行特别的工作而没有细胞核:哺乳纲动物的红血球,为了减少携带的氧气被红血球本身消耗,而成熟后就没有细胞核;植物则以筛管、导管、假导管为了运输功能,成熟后没有细胞核。

细胞核的定义

  细胞核是细胞的控制中心,在细胞的代谢、生长、分化中起着重要作用,是遗传物质的主要存在部位。尽管细胞核的形状有多种多样,但是它的基本结构却大致相同,即主要结构是由核膜、染色质、核仁和核骨架构成。

细胞核的分布、形态、大小、数目

·分布

  绝大多数真核生物细胞中;
  (1)原核细胞中没有真正的细胞核(称为拟核); 
  原核细胞拟核
  (2)有的真核细胞中也没有细胞核,如哺乳动物的成熟的红细胞,高等植物成熟的筛管细胞等极少数的细胞。

·形态

  球形或者卵状

·大小

  一般7微米左右

·数目

  一般一个:大多数生物体细胞中都是一个;
  有的没有:
  哺乳动物成熟的红细胞,被子植物筛管细胞;
细胞核
细胞核
  成熟红细胞无核无细胞器有的多个:
  植物个体发育过程中的多数胚乳核,草履虫等原生动物;
  人的骨胳肌细胞中的细胞核可达数百个。

结构

·核被膜

  核被膜(nuclear envelope)包裹在核表面,由基本平行的内层膜、外层膜两构成。两层膜的间隙宽10~15nm,称为核周隙(perinuclear cisterna)。核被膜上有核孔(nuclear pore)穿通。外核膜表面有核糖体附着,并与粗面内质网相续;核周隙亦与内质网腔相通,因此,核被膜也参与蛋白质合成。内核膜也参与蛋白质合成。内核膜的核质面有厚20~80nm的核纤层(fibrous lamina),是一层由细丝交织形成的致密网状结构。核纤层不仅对核膜有支持、稳定作用,也是染色质纤维西端的附着部位。

·核孔

  是直径50~80nm 的圆形孔。内、外核膜在孔缘相连续,孔内有环(annulus)与中心颗粒组成核孔复合体。环有16个球形亚单位,孔内、外线各有8个。从位于核孔中心的中心颗粒(又称孔栓)放射状发出细丝与16个亚单位相连。核孔所在处无核纤层。一般认为,水离子和核苷等小分子物质可直接通透核被膜;而RNA与蛋白质等大分子则经核孔出入核,但其出入方式尚不明了。显然,核功能活跃的细胞核孔数量多。成熟的精子几乎无核孔,而卵母细胞的核孔极其丰富,成为研究该结构的主要材料。

·染色质

  是遗传物质DNA和组蛋白在细胞间期的形态表现。在HE染色的切片上,染色质有的部分着色浅谈,称为常染色质(euchromatin),是核中进行RNA转录的部位;有的部分呈强嗜碱性。称异染色质:(heterochromatin),是功能静止的部分,故根据核的染色状态可推测其功能活跃程度。电镜下,染白质由颗粒与细丝组成,在常染色所部分呈稀疏,在异染色质则极为浓密。现已证明,染色质的基本结构为串珠状的染色质丝。是由DNA双股螺族链规则重复地盘绕,形成大量核小体(nucleosome)。核小体为直径约10nm的扁圆球形,核心由5种蛋白(H1、 H2A、H2B、H3)。
细胞核
细胞核

·核仁

  是形成核糖体前身的部位。大多数细胞可具有1~4个核仁。在合成蛋白旺盛的细胞,核仁多而大.光镜下,核仁呈圆形,并因含大量rRNA而显强嗜碱性。电镜下,核仁由细丝成分、颗粒成分与核仁相随染色质三部分构成。细丝成分与颗粒成分是rRNA与相关蛋白质的不同表现形式,二者常混合组成粗约60~80nm核仁丝,后者蟠曲成网架。通常认为,颗粒成分是核糖体亚基的前身,由细丝成分逐渐转变而成,可通过核孔进入细胞质;核仁相随染色质是编码rRNA的DAN链的局部。人的第13、14、15、21和22对染色体的一端有圆形的随体(satellite),通过随体柄与染色体其它部分相连。随体柄即为合成rRNA的基因位点,又称核仁组织者区(nucleons organizer region),当其解螺旋进入功能状态时即成为核仁相随染色质,并进一步发展为核仁。理论上人体细胞可有10个核仁,但在其形成过程中往往互相融合,因此细胞中核仁一般少于4个。

·核基质

  是核中除染色质与核仁以外的成分,包括核液与核骨架两部分。核液含水、离子、在HE酶类等无成分;核骨架(nuclear skeleton)是由多种蛋白质形成的三维纤维网架,并与核被膜核纤层相连,对核的结构具有支持作用。它的生化构成与其它可能的作用沿在研究中。

·细胞核骨架

  核骨架是由纤维蛋白构成的网架结构,其蛋白成分按道理说细胞质骨架有的,核骨架也应该有。但现在在核骨架中只发现有角蛋白和肌蛋白质成分,在某些原生动物核骨架中还发现含有微管。同时在核骨架中还有少量RNA,它对于维持核骨架三维网络结构的完整性是必需的。在进化趋势看,核骨架组分是由多样化走向单一,特化。

细胞核的发现史

  细胞核是最早发现的,由弗朗兹·鲍尔在1802年对其进行最早的描述。到了1831年,苏格兰植物学家罗伯特·布朗又在伦敦林奈学会的演讲中,对细胞核做了更为详细的叙述。布朗以显微镜观察兰花时,发现花朵外层细胞有一些不透光的区域,并称其为“areola”或“nucleus”。不过他并未提出这些构造可能的功用。马蒂亚斯·许莱登在1838年提出一项观点,认为细胞核能够生成细胞,并称这些细胞核为“细胞形成核”(Cytoblast)。他也表示自己发现了组成于“细胞形成核”周围的新细胞。不过弗朗兹·迈恩对此观念强烈反对,他认为细胞是经由分裂而增值,并认为许多细胞并没有细胞核。由细胞形成核作用重新生成细胞的观念,与罗伯特·雷马克及鲁道夫·菲尔绍的观点冲突,他们认为细胞是单独由细胞所生成。至此,细胞核的机能仍未明。
  在1876到1878年间,奥斯卡·赫特维希的数份有关海胆卵细胞受精作用的研究显示,精子的细胞合会进到卵子的内部,并与卵子细胞核融合。首度阐释了生物个体由单一有核细胞发育而成的可能性。这与恩斯特·海克尔的理论不同,海克尔认为物种会在胚胎发育时期重演其种系发生历程,其中包括从原始且缺乏结构的黏液状“无核裂卵”(Monerula),一直到有核细胞产生之间的过程。因此精细胞核在受精作用中的必要性受到了漫长的争论。赫特维希后来又在其他动物的细胞,包括两栖类与软体动物中确认了他的观察结果。而爱德华·施特拉斯布格也从植物得到相同结论。这些结果显示了细胞核在遗传上的重要性。1873年,奥古斯特·魏斯曼提出了一项观点,认为母系与父系生殖细胞在遗传上具有相等的影响力。到了20世纪初,有丝分裂得到了观察,而孟德尔定律也重新见世,这时候细胞核在携带遗传讯息上的重要性已逐渐明朗。

细胞核的功能

  从其结构,我们可以得出细胞核的功能:控制细胞的遗传,生长和发育。德国藻类学哈姆林的伞藻嫁接试验验证了细胞核是遗传物质携带者。
  细胞核是细胞的控制中心,在细胞的代谢、生长、分化中起着重要作用,是遗传物质的主要存在部位。一般说真核细胞失去细胞核后,很快就会死亡,但红细胞失去核后还能生活120天;植物筛管细胞,失去核后,能活好几年。

·遗传物质储存和复制的场所

  从细胞核的结构可以看出,细胞核中最重要的结构是染色质,染色质的组成成分是蛋白质分子和DNA分子,而DNA分子又是主要遗传物质。当遗传物质向后代传递时,必须在核中进行复制。所以,细胞核是遗传物储存和复制的场所。

·细胞遗传性和细胞代谢活动的控制中心

  遗传物质能经复制后传给子代,同时遗传物质还必须将其控制的生物性状特征表现出来,这些遗传物质绝大部分都存在于细胞核中。所以,细胞核又是细胞遗传性和细胞代谢活动的控制中心。例如,英国的克隆绵羊“多莉”就是将一只母羊卵细胞的细胞核除去,然后,在这个去核的卵细胞中,移植进另一个母羊乳腺细胞的细胞核,最后由这个卵细胞发育而成的。“多莉”的遗传性状与提供细胞核的母羊一样。这一实例充分说明了细胞核在控制细胞的遗传性和细胞代谢活动方面的重要作用。
细胞核
细胞核
  因此,对细胞核功能的较为全面的阐述应该是:细胞核是遗传信息库,是细胞代谢和遗传的控制中心。

细胞核的作用的发现

  1837年10月,施莱登把自己的实验结果和想法告诉了柏林大学解剖生理学家施旺,并特别指出细胞核在植物细胞发生中所起的重要作用。施旺立刻回想起自己曾在脊索细胞中看见过的同样“器官”,并意识到如果能够成功地证明脊索细胞中的细胞核起着在植物细胞发生中所起的相同作用,那么,这个发现将是极其有意义的。
  施旺从植物细胞与动物细胞结构上的相似性出发,在细胞水平上完成了二者的统一工作。1839年他发表了《关于动植物结构和生长相似性的显微研究》一文。全文内容有三部分:第一部分描述了他以动物为对象的研究情况和结论;第二部分提出了证据,把自己的实验结果与施莱登的研究结果作对比,表明动物和植物的基本结构单位都是细胞;第三部分总结了全部研究结果,提出了细胞学说,详细阐明了细胞的理论。施旺把施莱登证实了的植物的基本结构是细胞的观点推广到了动物界,并指出动植物发育的共同普遍规律。这在生物学史上具有划时代的意义。施旺指出:“细胞是有机体,整个动物和植物体乃是细胞的集合体。它们依照一定的规律排列在动植物体内。”

细胞核移植

·细胞核移植的概念及育种意义

  细胞核移植又称细胞工程、核质杂交,它是通过显微手术将称为供体的一种动物的一个细胞核,移植入称为受体的同种或异种的另一个细胞质中,并使受体细胞得以继续分裂和发育的方法。此技术除用于研究胚胎发育中的核质关系及其功能、发育机理等方面的一些基础理论问题外,自70年代起又应用这种方法来探索经济鱼类的育种途径。由于核质杂交的"移核鱼"后代能保持性状的稳定,其性状有的介于亲本之间,有的显示供体核的特性,有的偏于受体质的特性,有的"移核鱼"能够成熟并繁殖后代,因而为解决鱼类远缘杂交不育,培育具有稳定性状的优良品种开辟了新的方向。
  我国已进行了细胞核移植的鱼类有:金鱼核移入鲫去核卵;鲤核移入鲫去核卵;鲫核移入鲤去核卵;草鱼核移入团头鲂去核卵。对荷包红鲤核与鲫细胞质杂交的移核鱼子一代、子二代、子三代生长趋势的观察,以及对子三代的生产性能对比试验证明,子三代比作为供体核的荷包红鲤生长速度快14.74-22.47%,养殖产量高22%,肌肉蛋白高3.78%,含脂量低5.88%。当年鱼苗即能养到商品规格,具有良好的经济效益和生产推广价值。

·颖鲤

  颖鲤是采用细胞工程技术与常规杂交技术的有机结合新的综合育种方法而获得的育种新秀,是由中国水产科学研究院长江水产研究所于80年代培育而成的。该法是先将荷包红鲤核移入鲫去核卵,获得鲤鲫移核鱼,以鲤鲫移核鱼第二代为父本,黑龙江的散鳞镜鲤为母本杂交,其杂交种即是颖鲤。颖鲤具有生长快、含肉率高、肉质细嫩、味道鲜美、抗寒力强、容易起捕等优良性状。与其他杂交鲤相比,生长速度快30%以上,当年可达1-2公斤(长江以南地区)。当年颖鲤个体增重比父本快67%,比母本快27.1%,平均比双亲快109.1%,体内蛋白质含量比双亲高1-1.4%,可见颖鲤具有较强的生长优势和营养性能。1985年以来在全国20多个省、市、自治区推广,养殖面积达70万亩(4.7万公顷),产量3.5万吨,产值1.4亿元。颖鲤作为"八五"国家重点推广养殖对象,显示出良好的养殖前景。

细胞核的分离与鉴定

·实验原理

  一、 核体的制备核体是指含有少量细胞质并由质膜包裹的细胞核。因为在实际中我们不可能100%的得到细胞核,因此,棉纱,我们只能制备含有少量细胞质的核体,核体的制备方法主要有吸出法和原生质体破裂法等。在本实验中我们采用排除法来制备核体。排除法制备核体是通过细胞松弛素和高速离心的作用使细胞核排出,然后从离心管底部沉淀中收集获得核体。
  二、细胞核的鉴定因为细胞核中主要含DNA,是碱性蛋白。因此将分离出的核体经三氯醋酸处理,屏风,抽提掉核酸后,用酸性固绿溶液染色,可以使细胞核内的碱性蛋白显示出来。

·实验步骤

  1.细胞培养:将欲分离微核体和细胞质的动物接种于脱核塑料圆板上,使适宜的培养基中于37 ℃的条件下培养,使细胞固定在脱核塑料圆板上,脱核塑料圆板的直径应稍小于离心管的直径,使用前先用水洗干净再经过乙醇杀菌处理。
  2.秋水仙碱处理:细胞培养一段时间以后,加入0.1ug/ml的秋水仙碱,处理细胞48~60h,滤纸,使细胞形成多个大小不同的核体。
  3.细胞松弛素处理:在离心管内加入5ml预热至37 ℃的细胞松弛素B溶液将固定有动物细胞的圆板面朝下放入离心管内,固定圆板位置后,再加入10ml37 ℃的CB溶液。
  4.离心:在1000~15000r/min核体从细胞排出。
  5.收集核体:由于核体的贴附力弱,可以从离心管底部的沉淀中收集。
  6.固定:将收集的核体涂于玻片上制成涂片,滴加15%乙醇于涂片上,固定5min,室温晾干。
  7.三氯醋酸处理:将已固定的血涂片浸在90 ℃的三氯醋酸溶液中处理20min,细流水反复冲洗玻片上的三氯醋酸直至冲尽。用滤纸吸于玻片上多余水分晾干。
  8.染色:将制作好的涂片放入0.1%碱性固绿染液中染色10~15min,细流水冲去多余染液,晾干,镜检。

·注意事项

  1.在离心管内加入的5ml细胞核松弛素B溶液要预热到37 ℃,因为只有这样才接近动物的最佳体温37 ℃。
  2.涂片在用三氯醋酸处理时,时间不宜过长或过短,过长会使核膜裂解,过短使抽提的核酸不够。
  3.在染色时,时间一定要足够,否则染色不完全,得不到理想的实验结果。
  4.因去掉胞质的核体贴附能力弱,因注意在固定、三氯醋酸处理、染色时、尽量避免胞核的脱落。

·预期结果

  经碱性固绿染色的核体涂片被染成绿色,说明这是碱性蛋白,即细胞核。