频率

频率v
     频率v
  频率,是单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量,常用符号f或v表示,单位为秒-1。为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称“赫”。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学和无线电技术中也常用。交变电流在单位时间内完成周期性变化的次数,叫做电流的频率。  

名词解释

  频率是指单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量,常用符号f或v表示,单位为秒-1。通常指在一个周期内的重复次数,或每秒的周数。计量单位为Hz(Hertz),如频率为1000Hz(1kHz)的音频信号每秒便有1000个正弦波的周波。  

物理学上的频率

  物质在1秒内完成周期性变化的次数叫做频率,常用f表示。  物理中频率的单位是赫兹(Hz),简称赫,也常用千赫(kHz)或兆赫(MHz)或GHz做单位。1kHz=1000Hz,1MHz=1000000Hz 1GHz=1000MHz。频率f是周期T的倒数,即f =1/T。  而像中国使用的电是一种正弦交流电,其频率是50Hz,也就是它一秒钟内做了50次周期性变化。  另外,我们听到的声音也是一种有一定频率的波。人耳听觉的频率范围约为20-20000HZ,超出这个范围的就不为我们人耳所察觉。  

数学中的频率  

·定义

  在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值nA/n称为事件A发生的频率,并记为fn(A)。  ⒈当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率.这种“频率稳定性”也就是通常所说的统计规律性。  ⒉频率不等同于概率。由伯努利大数定理,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A)。  

·频率分布直方图

频率分布直方图
   频率分布直方图
  在直角坐标系中,纵轴表示频数,横轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。  频率分布直方图几个比较重要的数据求法:  平均数:频率分布直方图各个小矩形的面积*底边中点横坐标之和  中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标  众 数:频率分布直方图中最高矩形的底边中点的横坐标  补充:在图中,各个长方形的面积等于:相应各组的频率   

·数学中的频率计算

  随机事件在n次试验中发生m次的相对频次m/n。一般物理科学中频率指每秒中的振动次数,可以是随机的,也可以是确定性的。  在一定条件下,对所研究的对象进行观察或测验,每实现一次条件组,称为一次试验。其结果称为事件。在一次试验中,可能发生也可能不发生的事件称为随机事件。  随机事件 A发生的概率p(A)是该事件出现的可能性大小的度量。其数值在0与1之间。在一定条件下进行试验,如果事件A不可能发生,则p(A)=0;如果事件A必然发生,则p(A)=1。随着试验次数n的增大,频率接近于概率的可能性也越大,即:式中δ是任意小数值。  水文现象是复杂的自然现象,其出现的概率无法确知,只能通过统计实测水文资料中出现的频率作出推断。由于受到所依据资料的限制,总会带有一定的误差。  描述水文随机现象的随机变量X,一般属于连续型。因此,X等于任意数x的概率是p{X=x}。水文计算中以累积频率曲线FX(x)~x来描述水文变量的统计特性。如求长江宜昌站年洪峰流量大于或等于 80000m3/s的概率p{X≥80000}=FX(80000)。  在水文计算中,一般根据实测资料通过统计分析推估水文变量的频率密度函数fX(x),再对fX(x)积分(见图),可求得水文变量累积频率函数FX(x):  水文计算中,习惯上把累积频率曲线FX(x)简称为频率曲线,fX(x)~x曲线则称为频率密度分布曲线。  频率=频数/总数*100%  

相关理论

多普勒效应
    多普勒效应
多普勒效应  一种声音尽管只有一个恒定的频率,但是对听者来说,他有时却是变化的。当波源和听者之间发生相对运动时,听者所感到的频率改变的这种现象称为多普勒现象。  产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完全波的个数减少,即接收到的频率减小.