岩石

岩石
     岩石
  岩石,是固态矿物或矿物的混合物,由一种或通常由两种以上矿物所组成的固结或不固结的矿物体,其一部分是生物成因的(如煤),在自然界大量存在,构成地壳的很大一部分。其中海面下的岩石称为礁、暗礁及暗沙,由一种或多种矿物组成,具有一定结构构造的集合体,也有少数包含有生物的遗骸或遗迹(即化石)。岩石有三态:固态、气态(如天然气)、液态(如石油),但主要是固态物质,是组成地壳的物质之一,是构成地球岩石圈的主要成分。

岩石概况

  岩石是天然产出的具稳定外型的矿物或玻璃集合体,按照一定的方式结合而成。是构成地壳和上地幔的物质基础。按成因分为岩浆岩沉积岩变质岩。其中岩浆岩是由高温熔融的岩浆在地表或地下冷凝所形成的岩石,也称火成岩喷出岩;沉积岩是在地表条件下由风化作用、生物作用和火山作用的产物经水、空气和冰川等外力的搬运、沉积和成岩固结而形成的岩石;变质岩是由先成的岩浆岩、沉积岩或变质岩,由于其所处地质环境的改变经变质作用而形成的岩石。   
  地壳深处和上地幔的上部主要由火成岩和变质岩组成。从地表向下16公里范围内火成岩和变质岩的体积占95%。地壳表面以沉积岩为主,它们约占大陆面积的75%,洋底几乎全部为沉积物所覆盖。 岩石学主要研究岩石的物质成分、结构、构造、分类命名、形成条件、分布规律、成因、成矿关系以及岩石的演化过程等。它属地质科学中的重要的基础学科。

岩石的形成

  地球形成之初,地核的引力把宇宙中的尘埃吸过来,凝聚的尘埃就变成了山石,经过风化,变成了岩石。接着就变成陨石,在没有落入地球大气层时,是游离于外太空的石质的,铁质的或是石铁混合的物质,若是落入大气层,在没有被大气烧毁而落到地面就成了我们平时见到的陨石,简单的说,所谓陨石,就是微缩版的小行星“撞击了地球”而留下的残骸。几亿年过去了,世界上就有了无数岩石。现在人类在岩土工程界,常按工程性质将岩石分为极坚硬的、坚硬的、中等坚硬的和软弱的四种类型。正在向定量方向发展。

岩石性质

  岩石工程性质无怪乎就是物质成分(颗粒本身的性质)、结构(颗粒之间的联结)、构造(成生环境及改造、建造)、现今赋存环境(应力、温度、水)这几个方面的因素。如果是岩体,则取决于结构面和岩块两个方面,在大多数情况下,结构面起着控制性作用。

岩石强度

岩石
     岩石
  岩石在外力作用下达到破坏时的极限应力,岩石力学性质的主要属性之一。它是通过实验室内或现场的试验求得的。在岩石力学中,岩石一词是岩块和岩体的总称。岩块是指由地质构造因素割裂而成的不连续块体,是岩体的组成单元。实验室试验用的岩样就是岩块。岩体是指包括地质结构的地质体的一部分。虽然岩块和岩体具有相同的地质历史环境,经历过同样的地质构造作用,但它们的性质是有区别的。反映在强度方面,岩块的强度主要取决于构成岩石的矿物和颗粒之间的联结力和微裂隙的影响;而对岩体强度起控制作用的则是岩体中的结构面和构造特征。
  岩石强度一般包括单轴抗压强度、抗拉强度、抗剪强度(包括直剪强度、双轴抗剪强度和三轴抗剪强度),其中抗剪强度和抗压强度往往是确定岩石工程稳定性的主要因素。

岩石相关历史简介

    古老岩石都出现在大陆内部的结晶基底之中。代表性的岩石属基性和超基性的火成岩。这些岩石由于受到强烈的变质作用已转变为富含绿泥石角闪石变质岩,通常我们称为绿岩。如1973年在西格陵兰发现了同位素年龄约38亿年的花岗片麻岩。1979年,巴屯等测定南非波波林带中部的片麻岩年龄约39亿年左右。
  加拿大北部的变质岩—阿卡斯卡片麻岩是保存完好的古老地球表面的一部分。放射性年代测定表明阿卡斯卡片麻岩有将近40亿年的年龄,从而说明某些大陆物质在地球形成之后几亿年就已经存在了。
  最近,科学家在澳大利亚西南部发现了一批最古老的岩石,根据其中所含的锆石矿物晶体的同位素分析结果,表明它们的“年龄”约为43亿至44亿岁,是迄今发现的地球上最古老的岩石样本,根据这一发现可以推论,这些岩石形成时,地球上已经有了大陆和海洋。在地球诞生2亿至3亿年后,可能并不象人们所认为的那样由炽热的岩浆所覆盖,而是已经冷却到了足以形成固体地表和海洋的温度。地球的圈层分异在距今44亿年前可能就已经完成了。
  目前在中国发现的最古老岩石是冀东地区的花岗片麻岩,其中包体的岩石年龄约为35亿年。
  澳大利亚西部Warrawoona群中的微化石在形态结构上比较完整。它们究竟是蓝藻还是细菌目前尚难确定。通常认为,早期叠层石是蓝藻建造的,叠层石是蓝藻存在的指示。如果35亿年前就已经出现蓝藻,则说明释氧的光合作用早就开始了,这便引出一个问题:为什么直到20亿年前大气圈才积累自由氧呢?从35亿年前到20亿年前中间相隔15亿年之久,为什么氧的积累如此缓慢?对此当然有不同的解释。例如近年来已经发现叠层石也可能完全由光合细菌建造,或甚至由非光合细菌建造。
  最古老生命存在的间接证据中较重要的是格陵兰西部条带状铁建造(BIF)和轻碳同位素。如果证据成立,则由此可推断在38亿年前的地球上已经出现进行释氧光合作用的微生物,即类似蓝藻的生物。根据Cloud的解释,BIF是由光和微生物周期性地释氧而引起亚铁氧化为高价铁沉积下来的。轻碳同位素也是光合作用的间接证据。但反对的意见认为,BIF形成所需的氧可以通过大气中的水分子的光分解来提供,而轻碳同位素可能来自碳酸盐的热分解。
  十八世纪末岩石学从矿物学中脱胎出来而发展成一门独立的学科。在岩石学发展的初期,主要研究的是火成岩,到了十九世纪中叶才开始系统地研究变质岩,而沉积岩直到二十世纪初才引起人们的注意。目前岩石学正沿着岩浆岩石学、沉积岩石学和变质岩石学三个主要的分支方向发展。

岩石分类

岩石
     岩石
  岩石根据其成因、构造和化学成分分类,按其成因主要分为三大类:沉积岩岩浆岩火成岩)和变质岩,从地表深至16千米的岩石圈中,火成岩大约占95%,沉积岩只有不足5%,变质岩最少,不足1%。
  1、沉积岩
  沉积岩是在地表或近地表不太深的地方形成的一种岩石类型。它是由风化产物、火山物质、有机物质等碎屑物质在常温常压下经过搬运、沉积和石化作用,最后形成的岩石。
  沉积岩的物质来源主要有几个渠道,风化作用是一个主要渠道,它包括机械风化、化学风化和生物风化。机械风化是以崩解的方式把已经形成的岩石破碎成大小不同的碎屑;化学风化是由于水、氧气二氧化碳引起的化学作用使岩石分解形成碎屑;细菌、真菌、藻类等生物风化作用也能分解岩石。此外,火山爆发喷射出大量的火山物质也是沉积物质的来源之一;植物和动物有机质在沉积岩中也占有一定比例。
  不论那种方式形成的碎屑物质都要经历搬运过程,然后在合适的环境中沉积下来,经过漫长的压实作用,石化成坚硬的沉积岩。
  沉积岩主要有:砂岩、页岩、石灰岩
  2、岩浆岩
  岩浆岩也叫火成岩,是在地壳深处或在上地幔中形成的岩浆,在侵入到地壳上部或者喷出到地表冷却固结并经过结晶作用而形成的岩石。因为它生成的条件与沉积岩差别很大,因此,它的特点也与沉积岩明显不同。在野外观察,沉积岩常具有成层构造,层状构造是沉积岩所独有的特征。而在岩浆岩发育的地区则常常见到节理,而基本上看不到层理;在矿物组合上,在岩浆岩中出现的矿物,如橄榄石辉石角闪石等矿物是在高温高压条件下结晶形成的,在常温常压条件下不容易保存,因此,在岩浆岩中出现的矿物在沉积岩中很少见到。既使是同一族的矿物,比如虽然都有长石出现,它们在成分上也不一样。在沉积岩中的长石一般是钾长石和含钠高的酸性斜长石,而在岩浆岩中常常见到的含钙比较高的基性和中性斜长石,这些在沉积岩中都见不到。
  岩浆岩主要有:玄武岩安山岩流纹岩花岗岩
  3、 变质岩
岩石
     岩石
  在地壳形成和发展过程中,早先形成的岩石,包括沉积岩、岩浆岩,由于后来地质环境和物理化学条件的变化,在固态情况下发生了矿物组成调整、结构构造改变甚至化学成分的变化,而形成一种新的岩石,这种岩石被称为变质岩。变质岩是大陆地壳中最主要的岩石类型之一。
  在变质岩的概念中,有两点必须强调,这是变质岩区别于沉积岩和岩浆岩的关键所在。首先,变质作用形成于地壳一定的深度,也就是发生于一定的温度和压力范围。既不是沉积岩的地表或近地表常温常压条件,也不同于岩浆岩形成时的高温高压条件;另外一点就是变质作用中的矿物转变是在固态情况下完成的,而不是岩浆岩那种从液态的岩浆中结晶形成的。
  从以上描述来看,三大岩类似乎很好区分,它们的成因似乎也很清楚。但实际上,不论那类岩石的成因,都是在长达一、二个世纪的争论中不断建立和完善的。比如“水成说”和“火成说”的长期论争,最终以岩石多成因,以及岩浆的存在被肯定而告终。岩石成因的争论过程,就是人类认识自然的过程。
  变质岩主要有:大理岩、石英岩。
  火成岩是地幔中的岩浆涌入岩石圈或出露地表冷凝成固态形成的;沉积岩是由外力作用下形成的,其中一部分又叫“水成岩”,是由水将风化或水侵蚀的物质搬运沉积,经过压密和胶结作用形成的;变质岩是由于地球内力的高温高压造成岩石中的化学成分改变或重结晶形成的。
  火成岩按化学成分和矿物组成总体可分为两大类:酸性火成岩和碱性火成岩,详细可分为橄榄岩、玄武岩、安山岩、花岗岩、粗面岩、响岩、脉岩及火山碎屑岩八大类。火成岩按成因分为两类,一类是岩浆出露地表凝却而形成的火山岩,一类是岩浆在地表以下凝却形成的侵入岩。火山碎屑岩、玄武岩是一种火山岩,脉岩、花岗岩是一种侵入岩。
  沉积岩按沉积结构和组成可分为:砾岩 - 页岩砂岩石灰岩 – 生物岩 – 化学岩, 主要分布在地表浅层。
  变质岩分为两大类:“正变质岩”和“副变质岩”,正变质岩是火成岩经变质作用形成的,副变质岩是沉积岩经变质作用形成的。主要的经济矿物都是在变质岩中生成的。

所含矿物分类

岩石圈
     岩石圈
  一、主要矿物
  指岩石中含量多幷在确定岩石大类名称上起主要作用的矿物。例如花岗岩类,主要矿物是石英和钾长石,石英含量小于75%,钾长石含量大于25%时,则岩石为正长岩类,石英含量大于95%时,则归为石英岩类,所以对于花岗岩来说,石英、长石为主要矿物。
  二、次要矿物
  指岩石中含量次于主要矿物的矿物,对划分岩石大类不起主要作用,但对确定岩石种属起一定作用,含量一般小于15%。如闪长岩类,石英是次要矿物,闪长岩中含有石英(含量达5%)称石英闪长岩,无石英或石英小于5%,则称闪长岩,但二者均属闪长岩大类,所以对闪长岩来说石英石是次要矿物。
  三、副矿物
  岩石中含量很少,通常不到1%,它们通常不参与岩石命名,只有对岩石成因或成矿方面有特殊意义时,有选择地用作岩石名称前的点缀,如独居石花岗岩,独居石以副矿物存在,但指示该花岗岩富稀土元素。

岩石的风化

岩石
     岩石
  岩石在日光、水分、生物和空气的作用下,逐渐被破坏和分解为沙和泥土,称为风化作用。沙和泥土就是岩石风化后的产物。岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。导致上述现象的作用称风化作用。分为:
  1、物理风化作用。主要包括温度变化引起的岩石胀缩、岩石裂隙中水的冻结和盐类结晶引起的撑胀、岩石因荷载解除引起的膨胀等。
  2、化学风化作用。包括:水对岩石的溶解作用;矿物吸收水分形成新的含水矿物,从而引起岩石膨胀崩解的水化作用;矿物与水反应分解为新矿物的水解作用;岩石因受空气或水中游离氧作用而致破坏的氧化作用。
  3、生物风化作用。包括动物和植物对岩石的破坏,其对岩石的机械破坏亦属物理风化作用,其尸体分解对岩石的侵蚀亦属化学风化作用。人为破坏也是岩石风化的重要原因。岩石风化程度可分为全风化、强风化、弱风化和微风化4个级别。
  大约在200年前,人们可能认为高山、湖泊和沙漠都是地球上永恒不变的特征。可现在我们已经知道高山最终将被风化和剥蚀为平地,湖泊终将被沉积物和植被填满,沙漠会随着气候的变化而行踪不定。地球上的物质永无止境地运动着。暴露在地壳表面的大部分岩石都处在与其形成时不同的物理化学条件下,而且地表富含氧气二氧化碳和水,因而岩石极易发生变化和破坏。表现为整块的岩石变为碎块,或其成分发生变化,最终使坚硬的岩石变成松散的碎屑和土壤。矿物和岩石在地表条件下发生的机械碎裂和化学分解过程称为风化。由于风、水流及冰川等动力将风化作用的产物搬离原地的作用过程叫做剥蚀。
  地表岩石在原地发生机械破碎而不改变其化学成分也不新矿物的作用称物理风化作用。如矿物岩石的热胀冷缩、冰劈作用、层裂和盐分结晶等作用均可使岩石由大块变成小块以至完全碎裂。化学风化作用是指地表岩石受到水、氧气和二氧化碳的作用而发生化学成分和矿物成分变化,并产生新矿物的作用。主要通过溶解作用水化作用水解作用碳酸化作用和氧化作用等式进行。   
  虽然所有的岩石都会风化,但并不是都按同一条路径或同一个速率发生变化。经过长年累月对不同条件下风化岩石的观察,我们知道岩石特征、气候和地形条件是控制岩石风化的主要因素。不同的岩石具有不同的矿物组成和结构构造,不同矿物的溶解性差异很大。节理、层理和孔隙的分布状况和矿物的粒度,又决定了岩石的易碎性和表面积。风化速率的差异,可以从不同岩石类型的石碑上表现出来。如花岗岩石碑,其成分主要是硅酸盐矿物。这种石碑就能很好地抵御化学风化。而大理岩石碑则明显地容易遭受风化。
  气候因素主要是通过气温、降雨量以及生物的繁殖状况而表现的。在温暖和潮湿的环境下,气温高,降雨量大,植物茂密,微生物活跃,化学风化作用速度快而充分,岩石的分解向纵深发展可形成巨厚的风化层。在极地和沙漠地区,由于气候干冷,化学风化的作用不大,岩石易破碎为棱角状的碎屑。最典型的例子,是将矗立于干燥的埃及已35个世纪并保存完好的克列奥帕特拉花岗岩尖柱塔,搬移到空气污染严重的纽约城中心公园之后,仅过了75年就已面目全非。
  地势的高度影响到气候:中低纬度的高山区山麓与山顶的温度、气候差别很大,其生物界面貌显着不同。因而风化作用也存在显着的差别。地势的起伏程度对于风化作用也具普遍意义:地势起伏大的山区,风化产物易被外力剥蚀而使基岩裸露,加速风化。山坡的方向涉及到气候和日照强度,如山体的向阳坡日照强,雨水多,而山体的背阳坡可能常年冰雪不化,显然岩石的风化特点差别较大。
  剥蚀与风化作用在大自然中相辅相成,只有当岩石被风化后,才易被剥蚀。而当岩石被剥蚀后,才能露出新鲜的岩石,使之继续风化。风化产物的搬运是剥蚀作用的主要体现。当岩屑随着搬运介质,如风或水等流动时,会对地表、河床及湖岸带产生侵蚀。这样也就产生更多的碎屑,为沉积作用提供了物质条件。

岩石的应用

岩石
      岩石
  一、做建材
  1. 大理岩:大理岩的岩面质感细致,常用来作为壁面或地板。由于大理岩是由石灰岩变质而成,主要成分为碳酸钙,因此也是制造水泥的原料。大理岩材质软而细致,是很好的雕塑石材,许多有名的雕像都是由大理岩作成的,如着名的维纳斯像。其他如墙面或摆饰,也常是由大理石加工琢磨而成,如花瓶、烟灰缸、桌子等家用品。
  2. 花岗岩:本土的花岗岩只有在金门才看得到,因此金门的老房子几乎都是用花岗岩做成的。台湾的寺庙所用的花岗岩,是来自福建,多用于寺庙里的龙柱、地砖、石狮。
  3. 板岩:因其容易裂成薄板状,且在山区极易取得,故原住民至今仍使用板岩作为建材,筑成石板屋或围墙。
  4. 砾岩:有些砾岩含有鹅卵石及砂,而且胶结不良,容易将它们分散开来,例如:台湾西部第四纪的头嵙山层中就是这种砾岩,其中卵石和砂都是建材。
  5. 石灰岩:台湾最常见的石灰岩是由珊瑚形成的,通称为珊瑚礁石灰岩。在澎湖,珊瑚礁石俗称「石」,居民用以作为围墙建材,以遮蔽强烈的东北季风,保护农作物。
  6. 泥岩:由于其主要成分是黏土,自古就被作为砖瓦、陶器的原料。
  7. 安山岩:由于材质坚硬,亦常用来作庙宇的龙柱、墙壁的石雕、墓碑、地砖等。
  二、提炼金属
  1. 金矿:含金的岩石经过风化和侵蚀作用,金会被分离出来而成自然金,因为金比泥沙重得多,容易沉积下来,经过淘洗,就成为黄金。
  2. 黄铜矿:黄铜矿是提炼铜最主要的矿物。
  3. 方铅矿:方铅矿呈现铅灰色,有立方体的解理,是最重要的含铅矿物。
  4. 赤铁矿:赤铁矿外观颜色呈现铁灰色或红褐色,是最重要的含铁矿物。
  5. 磁铁矿:磁铁矿属含铁矿物,具有磁性,吸附含铁物质。
  三、珍贵宝石
  矿物若具有坚硬、稀有、耐久、透明且颜色美丽的特点,即常被用来作为装饰品,一般称为宝石,以下是常见的宝石简介:
  1. 钻石:即俗称的金刚石,有许多种颜色,如淡黄、褐、白、蓝、绿、红等,其中以无色透明的价值最高。
  2. 刚玉:刚玉也有许多不同的颜色,如:红色的刚玉俗名红宝石,蓝色的刚玉叫做蓝宝石。其化学成分为三氧化二铝。
  3. 蛋白石:一般为无色或白色,有些具有特殊的晕彩。
  4. 水晶:纯石英单晶称为水晶,水晶内因含不同杂质而呈现不同颜色,如:黄水晶、紫水晶等。石英的纤维状显微晶聚合体称为玉髓;石英的粒状显微晶聚合体称为燧石,这两种矿物是台东县重要的玉石。
岩石
      岩石
  四、颜料
  有些矿物具有特别的颜色,可用来作成颜料,如蓝色的蓝铜矿,绿色的孔雀石,红色的辰砂。
  五、其他用途
  1. 石英:石英是制造玻璃及半导体的主要原料,如:苗栗县汶水溪的上福基砂岩中的石英砂即为制造玻璃的主要材料。
  2. 方解石:方解石存在于大理岩及石灰岩中,是制造水泥的主要原料。
  3. 白云母:白云母因不导电、不导热且具有高熔点的特性,因此经常被用来作为电热器中绝缘体的材料。
  4. 石墨:硬度低,且具有油脂光泽,条痕为黑色,常用于制造铅笔芯,此外石墨还可以做成润滑剂、电极、坩埚等。
  5. 硫磺:火山地区的温泉中即含有黄色的硫磺
  6. 石膏:石膏一般用于固定骨折受伤处,或做成塑像,也用于建筑工业。
  7. 磷灰石:用于制造农业用肥。
  8. 蛇纹石:含有的成分,可用于炼钢工业上。
  9. 滑石:硬度低,有滑腻感;通常被研磨成粉末,以制造颜料、爽身粉、去污粉、化妆品等。